transform[U](t: Dataset[T] => Dataset[U]): Dataset[U]
Dataset Operators
You can group the set of all operators to use with Datasets per their target, i.e. the part of a Dataset they are applied to.
Beside the above operators, there are the following ones working with a Dataset as a whole.
| Operator | Description |
|---|---|
Converting a |
|
Repartitioning a |
|
Counts the number of rows |
|
Explain logical and physical plans of a |
|
Internally, |
|
Internally, |
|
Randomly split a |
|
Reduces the elements of a Internally, |
|
Repartitioning a |
|
Converts a |
|
Transforms a |
|
Creates a streaming Used exclusively in Structured Streaming. |
|
count Operator
|
Caution
|
FIXME |
toLocalIterator Operator
|
Caution
|
FIXME |
createTempViewCommand Internal Operator
|
Caution
|
FIXME |
createGlobalTempView Operator
|
Caution
|
FIXME |
createOrReplaceTempView Operator
|
Caution
|
FIXME |
createTempView Operator
|
Caution
|
FIXME |
Transforming Datasets — transform Operator
transform applies t function to the source Dataset[T] to produce a result Dataset[U]. It is for chaining custom transformations.
val dataset = spark.range(5)
// Transformation t
import org.apache.spark.sql.Dataset
def withDoubled(longs: Dataset[java.lang.Long]) = longs.withColumn("doubled", 'id * 2)
scala> dataset.transform(withDoubled).show
+---+-------+
| id|doubled|
+---+-------+
| 0| 0|
| 1| 2|
| 2| 4|
| 3| 6|
| 4| 8|
+---+-------+
Internally, transform executes t function on the current Dataset[T].
Converting "Typed" Dataset to "Untyped" DataFrame — toDF Methods
toDF(): DataFrame
toDF(colNames: String*): DataFrame
Internally, the empty-argument toDF creates a Dataset[Row] using the Dataset's SparkSession and QueryExecution with the encoder being RowEncoder.
|
Caution
|
FIXME Describe toDF(colNames: String*)
|
Converting to Dataset — as Method
|
Caution
|
FIXME |
Accessing DataFrameWriter — write Method
write: DataFrameWriter[T]
write method returns DataFrameWriter for records of type T.
import org.apache.spark.sql.{DataFrameWriter, Dataset}
val ints: Dataset[Int] = (0 to 5).toDS
val writer: DataFrameWriter[Int] = ints.write
Accessing DataStreamWriter — writeStream Method
writeStream: DataStreamWriter[T]
writeStream method returns DataStreamWriter for records of type T.
val papers = spark.readStream.text("papers").as[String]
import org.apache.spark.sql.streaming.DataStreamWriter
val writer: DataStreamWriter[String] = papers.writeStream
Display Records — show Methods
show(): Unit
show(numRows: Int): Unit
show(truncate: Boolean): Unit
show(numRows: Int, truncate: Boolean): Unit
show(numRows: Int, truncate: Int): Unit
|
Caution
|
FIXME |
Internally, show relays to a private showString to do the formatting. It turns the Dataset into a DataFrame (by calling toDF()) and takes first n records.
Taking First n Records — take Action
take(n: Int): Array[T]
take is an action on a Dataset that returns a collection of n records.
|
Warning
|
take loads all the data into the memory of the Spark application’s driver process and for a large n could result in OutOfMemoryError.
|
foreachPartition Action
foreachPartition(f: Iterator[T] => Unit): Unit
foreachPartition applies the f function to each partition of the Dataset.
case class Record(id: Int, city: String)
val ds = Seq(Record(0, "Warsaw"), Record(1, "London")).toDS
ds.foreachPartition { iter: Iterator[Record] => iter.foreach(println) }
|
Note
|
foreachPartition is used to save a DataFrame to a JDBC table (indirectly through JdbcUtils.saveTable) and ForeachSink.
|
mapPartitions Operator
mapPartitions[U: Encoder](func: Iterator[T] => Iterator[U]): Dataset[U]
mapPartitions returns a new Dataset (of type U) with the function func applied to each partition.
|
Caution
|
FIXME Example |
Creating Zero or More Records — flatMap Operator
flatMap[U: Encoder](func: T => TraversableOnce[U]): Dataset[U]
flatMap returns a new Dataset (of type U) with all records (of type T) mapped over using the function func and then flattening the results.
|
Note
|
flatMap can create new records. It deprecated explode.
|
final case class Sentence(id: Long, text: String)
val sentences = Seq(Sentence(0, "hello world"), Sentence(1, "witaj swiecie")).toDS
scala> sentences.flatMap(s => s.text.split("\\s+")).show
+-------+
| value|
+-------+
| hello|
| world|
| witaj|
|swiecie|
+-------+
Internally, flatMap calls mapPartitions with the partitions flatMap(ped).
Repartitioning Dataset with Shuffle Disabled — coalesce Operator
coalesce(numPartitions: Int): Dataset[T]
coalesce operator repartitions the Dataset to exactly numPartitions partitions.
Internally, coalesce creates a Repartition logical operator with shuffle disabled (which is marked as false in the below explain's output).
scala> spark.range(5).coalesce(1).explain(extended = true)
== Parsed Logical Plan ==
Repartition 1, false
+- Range (0, 5, step=1, splits=Some(8))
== Analyzed Logical Plan ==
id: bigint
Repartition 1, false
+- Range (0, 5, step=1, splits=Some(8))
== Optimized Logical Plan ==
Repartition 1, false
+- Range (0, 5, step=1, splits=Some(8))
== Physical Plan ==
Coalesce 1
+- *Range (0, 5, step=1, splits=Some(8))
Repartitioning Dataset (Shuffle Enabled) — repartition Operator
repartition(numPartitions: Int): Dataset[T]
repartition(numPartitions: Int, partitionExprs: Column*): Dataset[T]
repartition(partitionExprs: Column*): Dataset[T]
repartition operators repartition the Dataset to exactly numPartitions partitions or using partitionExprs expressions.
Internally, repartition creates a Repartition or RepartitionByExpression logical operators with shuffle enabled (which is true in the below explain's output beside Repartition).
scala> spark.range(5).repartition(1).explain(extended = true)
== Parsed Logical Plan ==
Repartition 1, true
+- Range (0, 5, step=1, splits=Some(8))
== Analyzed Logical Plan ==
id: bigint
Repartition 1, true
+- Range (0, 5, step=1, splits=Some(8))
== Optimized Logical Plan ==
Repartition 1, true
+- Range (0, 5, step=1, splits=Some(8))
== Physical Plan ==
Exchange RoundRobinPartitioning(1)
+- *Range (0, 5, step=1, splits=Some(8))
|
Note
|
repartition methods correspond to SQL’s DISTRIBUTE BY or CLUSTER BY clauses.
|
Projecting Columns — select Operator
select[U1: Encoder](c1: TypedColumn[T, U1]): Dataset[U1]
select[U1, U2](c1: TypedColumn[T, U1], c2: TypedColumn[T, U2]): Dataset[(U1, U2)]
select[U1, U2, U3](
c1: TypedColumn[T, U1],
c2: TypedColumn[T, U2],
c3: TypedColumn[T, U3]): Dataset[(U1, U2, U3)]
select[U1, U2, U3, U4](
c1: TypedColumn[T, U1],
c2: TypedColumn[T, U2],
c3: TypedColumn[T, U3],
c4: TypedColumn[T, U4]): Dataset[(U1, U2, U3, U4)]
select[U1, U2, U3, U4, U5](
c1: TypedColumn[T, U1],
c2: TypedColumn[T, U2],
c3: TypedColumn[T, U3],
c4: TypedColumn[T, U4],
c5: TypedColumn[T, U5]): Dataset[(U1, U2, U3, U4, U5)]
|
Caution
|
FIXME |
filter Operator
|
Caution
|
FIXME |
where Operator
where(condition: Column): Dataset[T]
where(conditionExpr: String): Dataset[T]
where is a synonym for filter operator, i.e. it simply passes the parameters on to filter.
Projecting Columns using Expressions — selectExpr Operator
selectExpr(exprs: String*): DataFrame
selectExpr is like select, but accepts SQL expressions exprs.
val ds = spark.range(5)
scala> ds.selectExpr("rand() as random").show
16/04/14 23:16:06 INFO HiveSqlParser: Parsing command: rand() as random
+-------------------+
| random|
+-------------------+
| 0.887675894185651|
|0.36766085091074086|
| 0.2700020856675186|
| 0.1489033635529543|
| 0.5862990791950973|
+-------------------+
Internally, it executes select with every expression in exprs mapped to Column (using SparkSqlParser.parseExpression).
scala> ds.select(expr("rand() as random")).show
+------------------+
| random|
+------------------+
|0.5514319279894851|
|0.2876221510433741|
|0.4599999092045741|
|0.5708558868374893|
|0.6223314406247136|
+------------------+
|
Note
|
A new feature in Spark 2.0.0. |
Randomly Split Dataset — randomSplit Operator
randomSplit(weights: Array[Double]): Array[Dataset[T]]
randomSplit(weights: Array[Double], seed: Long): Array[Dataset[T]]
randomSplit randomly splits the Dataset per weights.
weights doubles should sum up to 1 and will be normalized if they do not.
You can define seed and if you don’t, a random seed will be used.
|
Note
|
It is used in TrainValidationSplit to split dataset into training and validation datasets. |
val ds = spark.range(10)
scala> ds.randomSplit(Array[Double](2, 3)).foreach(_.show)
+---+
| id|
+---+
| 0|
| 1|
| 2|
+---+
+---+
| id|
+---+
| 3|
| 4|
| 5|
| 6|
| 7|
| 8|
| 9|
+---+
|
Note
|
A new feature in Spark 2.0.0. |
Displaying Logical and Physical Plans, Their Cost and Codegen — explain Operator
explain(): Unit
explain(extended: Boolean): Unit
explain prints the logical and (with extended flag enabled) physical plans, their cost and codegen to the console.
|
Tip
|
Use explain to review the structured queries and optimizations applied.
|
Internally, explain creates a ExplainCommand logical command and requests SessionState to execute it (to get a QueryExecution back).
|
Note
|
explain uses ExplainCommand logical command that, when executed, gives different text representations of QueryExecution (for the Dataset’s LogicalPlan) depending on the flags (e.g. extended, codegen, and cost which are disabled by default).
|
explain then requests QueryExecution for SparkPlan and collects the records (as InternalRow objects).
|
Note
|
|
In the end, explain goes over the InternalRow records and converts them to lines to display to console.
|
Note
|
explain "converts" an InternalRow record to a line using getString at position 0.
|
|
Tip
|
If you are serious about query debugging you could also use the Debugging Query Execution facility. |
scala> spark.range(10).explain(extended = true)
== Parsed Logical Plan ==
Range (0, 10, step=1, splits=Some(8))
== Analyzed Logical Plan ==
id: bigint
Range (0, 10, step=1, splits=Some(8))
== Optimized Logical Plan ==
Range (0, 10, step=1, splits=Some(8))
== Physical Plan ==
*Range (0, 10, step=1, splits=Some(8))
toJSON Method
toJSON maps the content of Dataset to a Dataset of JSON strings.
|
Note
|
A new feature in Spark 2.0.0. |
scala> val ds = Seq("hello", "world", "foo bar").toDS
ds: org.apache.spark.sql.Dataset[String] = [value: string]
scala> ds.toJSON.show
+-------------------+
| value|
+-------------------+
| {"value":"hello"}|
| {"value":"world"}|
|{"value":"foo bar"}|
+-------------------+
Internally, toJSON grabs the RDD[InternalRow] (of the QueryExecution of the Dataset) and maps the records (per RDD partition) into JSON.
|
Note
|
toJSON uses Jackson’s JSON parser — jackson-module-scala.
|
Accessing Schema — schema Method
A Dataset has a schema.
schema: StructType
|
Tip
|
You may also use the following methods to learn about the schema:
|
Accessing Underlying RDD — rdd Attribute
rdd: RDD[T]
Whenever you are in need to convert a Dataset into a RDD, executing rdd method gives you the RDD of the proper input object type (not Row as in DataFrames) that sits behind the Dataset.
scala> val rdd = tokens.rdd
rdd: org.apache.spark.rdd.RDD[Token] = MapPartitionsRDD[11] at rdd at <console>:30
Internally, it looks ExpressionEncoder (for the Dataset) up and accesses the deserializer expression. That gives the DataType of the result of evaluating the expression.
|
Note
|
A deserializer expression is used to decode an InternalRow to an object of type T. See ExpressionEncoder.
|
It then executes a DeserializeToObject logical operator that will produce a RDD[InternalRow] that is converted into the proper RDD[T] using the DataType and T.
|
Note
|
It is a lazy operation that "produces" a RDD[T].
|
Creating Streaming Dataset with EventTimeWatermark Logical Operator — withWatermark Operator
withWatermark(eventTime: String, delayThreshold: String): Dataset[T]
Internally, withWatermark creates a Dataset with EventTimeWatermark logical plan for streaming Datasets.
|
Note
|
withWatermark uses EliminateEventTimeWatermark logical rule to eliminate EventTimeWatermark logical plan for non-streaming batch Datasets.
|
// Create a batch dataset
val events = spark.range(0, 50, 10).
withColumn("timestamp", from_unixtime(unix_timestamp - 'id)).
select('timestamp, 'id as "count")
scala> events.show
+-------------------+-----+
| timestamp|count|
+-------------------+-----+
|2017-06-25 21:21:14| 0|
|2017-06-25 21:21:04| 10|
|2017-06-25 21:20:54| 20|
|2017-06-25 21:20:44| 30|
|2017-06-25 21:20:34| 40|
+-------------------+-----+
// the dataset is a non-streaming batch one...
scala> events.isStreaming
res1: Boolean = false
// ...so EventTimeWatermark is not included in the logical plan
val watermarked = events.
withWatermark(eventTime = "timestamp", delayThreshold = "20 seconds")
scala> println(watermarked.queryExecution.logical.numberedTreeString)
00 Project [timestamp#284, id#281L AS count#288L]
01 +- Project [id#281L, from_unixtime((unix_timestamp(current_timestamp(), yyyy-MM-dd HH:mm:ss, Some(America/Chicago)) - id#281L), yyyy-MM-dd HH:mm:ss, Some(America/Chicago)) AS timestamp#284]
02 +- Range (0, 50, step=10, splits=Some(8))
// Let's create a streaming Dataset
import org.apache.spark.sql.types.StructType
val schema = new StructType().
add($"timestamp".timestamp).
add($"count".long)
scala> schema.printTreeString
root
|-- timestamp: timestamp (nullable = true)
|-- count: long (nullable = true)
val events = spark.
readStream.
schema(schema).
csv("events").
withWatermark(eventTime = "timestamp", delayThreshold = "20 seconds")
scala> println(events.queryExecution.logical.numberedTreeString)
00 'EventTimeWatermark 'timestamp, interval 20 seconds
01 +- StreamingRelation DataSource(org.apache.spark.sql.SparkSession@75abcdd4,csv,List(),Some(StructType(StructField(timestamp,TimestampType,true), StructField(count,LongType,true))),List(),None,Map(path -> events),None), FileSource[events], [timestamp#329, count#330L]
|
Note
|
|
|
Note
|
delayThreshold must not be negative (and milliseconds and months should both be equal or greater than 0).
|
|
Note
|
withWatermark is used when…FIXME
|