import org.apache.spark.ml.regression._
val glm = new GeneralizedLinearRegression()
import org.apache.spark.ml.linalg._
val features = Vectors.sparse(5, Seq((3,1.0)))
val trainDF = Seq((0, features, 1)).toDF("id", "features", "label")
val glmModel = glm.fit(trainDF)
GeneralizedLinearRegression (GLM)
GeneralizedLinearRegression is a regression algorithm. It supports the following error distribution families:
-
gaussian -
binomial -
poisson -
gamma
GeneralizedLinearRegression supports the following relationship between the linear predictor and the mean of the distribution function links:
-
identity -
logit -
log -
inverse -
probit -
cloglog -
sqrt
GeneralizedLinearRegression supports 4096 features.
The label column has to be of DoubleType type.
|
Note
|
GeneralizedLinearRegression belongs to org.apache.spark.ml.regression package.
|
GeneralizedLinearRegression is a Regressor with features of Vector type that can train a GeneralizedLinearRegressionModel.
Regressor
Regressor is a custom Predictor.