scala> println(lr.explainParams)
elasticNetParam: the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty (default: 0.0)
featuresCol: features column name (default: features)
fitIntercept: whether to fit an intercept term (default: true)
labelCol: label column name (default: label)
maxIter: maximum number of iterations (>= 0) (default: 100)
predictionCol: prediction column name (default: prediction)
regParam: regularization parameter (>= 0) (default: 0.0)
solver: the solver algorithm for optimization. If this is not set or empty, default value is 'auto' (default: auto)
standardization: whether to standardize the training features before fitting the model (default: true)
tol: the convergence tolerance for iterative algorithms (default: 1.0E-6)
weightCol: weight column name. If this is not set or empty, we treat all instance weights as 1.0 (default: )
Example — Linear Regression
The DataFrame used for Linear Regression has to have features
column of org.apache.spark.mllib.linalg.VectorUDT
type.
Note
|
You can change the name of the column using featuresCol parameter.
|
The list of the parameters of LinearRegression
:
Caution
|
FIXME The following example is work in progress. |
import org.apache.spark.ml.Pipeline
val pipeline = new Pipeline("my_pipeline")
import org.apache.spark.ml.regression._
val lr = new LinearRegression
val df = sc.parallelize(0 to 9).toDF("num")
val stages = Array(lr)
val model = pipeline.setStages(stages).fit(df)
// the above lines gives:
java.lang.IllegalArgumentException: requirement failed: Column features must be of type org.apache.spark.mllib.linalg.VectorUDT@f71b0bce but was actually IntegerType.
at scala.Predef$.require(Predef.scala:219)
at org.apache.spark.ml.util.SchemaUtils$.checkColumnType(SchemaUtils.scala:42)
at org.apache.spark.ml.PredictorParams$class.validateAndTransformSchema(Predictor.scala:51)
at org.apache.spark.ml.Predictor.validateAndTransformSchema(Predictor.scala:72)
at org.apache.spark.ml.Predictor.transformSchema(Predictor.scala:117)
at org.apache.spark.ml.Pipeline$$anonfun$transformSchema$4.apply(Pipeline.scala:182)
at org.apache.spark.ml.Pipeline$$anonfun$transformSchema$4.apply(Pipeline.scala:182)
at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57)
at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66)
at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186)
at org.apache.spark.ml.Pipeline.transformSchema(Pipeline.scala:182)
at org.apache.spark.ml.PipelineStage.transformSchema(Pipeline.scala:66)
at org.apache.spark.ml.Pipeline.fit(Pipeline.scala:133)
... 51 elided